샤를의 법칙(charles's Law)
보일의 실험은 압력과 부피의 영향 만을 다루었으며, 그는 세 번째 요인인 온도의 영향을 고려하지 않았고, 기체 행동에 있어서 온도의 영향은 처음으로 프랑스의 과학자 쟈크 사를(Jacques Charles)에 의해 탐구되으며,(대부분의 그의 연구는 동료 조셉 게이뤼삭(Jeseph Gay-Lussac)에 의해 발표되었습니다?
실험을 통해 샤를은 용기 안 기체의 압력을 일정하게 유지하면 온도가 증가함에 따라 부피가 증가하는 것을 발견했고, 부피를 일정하게 유지하면 온도가 증가함에 따라 압력이 증가함을 알게 해 줍니다.
다른 말로 바꾸면 샤를의 법칙은 주어진 기체의 부피 또는 압력의 변화는 직접적으로 절대 온도의 변화에 정비례한다는 것이고, 이 특성의 예는 스쿠버 실린더의 압력 변화에 관한 일반적인 가이드라인이 되며, 스쿠버 실린더는 1도c 변화할 때마다 0.6바의 압력이 변화하며, 그러나 이것은 정확한 숫자는 아닙니다. 정확하게 계산하기 위해서는 샤를의 법칙인 공식을 적용해야 하며, 우리가 이것을 보일의 법칙과 합하여 사용할 때 가장 유용해집니다.
P x V = K x T
또는
여기에서
P 는 절대압
V 는 부피
T는 절대온도(켈빈 또는 랭킨으로)
그리고
K는 상수.
역시 보일의 법칙에서와 마찬가지로 우리가 K(상수)를 다루고 있으므로 K를 생략하고 두 세트의 압력과 부피, 그리고 온도를 이용해서 공식을 다시 정리해보면 다음과 같습니다.
이 공식으로 모든 가능한 요소들-압력, 부피, 그리고 온도를 다 고려하게 되고, 이것은 이상기체 상태방정식을 수학적으로 표현한 것이며, 여기에 다이빙에 이상기체 상태방정식을 이용할 수 있는 예를 몇 가지 들어 보겠습니다.
미터식
200바로 실린더를 채우는 데 12리터 실린더가 온도 52도c 에 달했으며, 이 실린더를 7도c의 수온에서 사용할 것으로, 입수했을 때 얼마나 많은 실린더 압력을 가지게 될지 구할 경우
P1 200바 + 1K = 201바(절대압)
V1 실린더의 부피는 변하지 않으므로 (V1=V2) 간단하게 하기 위해서 부피를 공식에서 생략함.
T1 52c + 273c = 325 켈빈(K)
T2 7C + 273C = 280 켈빈(K)
부피가 공식에서 생략되었으므로 공식은
값을 적어 넣으면 이 공식은
P2 = 173바(절대압) - 1바 = 172바(게이지압)
다음 보기는 부피가 변할 경우 어떻게 이 공식을 이용할 수 있는지 보여줍니다.
미터식
수면 공기공급 시스템을 사용하는 산업 다이버가 수면에 분당 500리터 용량의 컴프레서를 가지고 있고, 수면의 기온은 29도c이며, 다이버는 수온이 약 5도c인 55미터 수심에서 작업을 할 것으로, 이 컴프레서는 이 구체적인 수심에서 분당 얼마만큼의 공기를 공급해 줄 수 있을까?
P1 1바 절대압
V1 500 리터
T1 302K
P2 6.5바 절대압
T2 278K
V2 알 수 없음
그래서
그래서
V2 = 70.81 리터/ 분당
샤를의 법칙 공식 중의 분수는 문서 삽입이 어려워 포함시키지 않았습니다. 필요하신 회원, 고객님께서는 연락 주시면 이메일로 보내 드리겠습니다.
참고문헌: Instructor Manual(PADI)
The Encyclopedia of Recreational Diving(PADI)
Diving Knowledge Workbook(PADI)
Divemaster Manual(PADI)